Name:		
Gibbs Free	Energy Practice Problems	

 $^{\circ}C = (^{\circ}F - 32) * 5/9$ $^{\circ}F = ^{\circ}C * 9/5 + 32$ $K = ^{\circ}C + 273$

1. Calculate the Gibbs free energy change (ΔG) for the following chemical reaction:

Date: _____

ATP \longrightarrow ADP + P_i

The reaction occurs at 68 °F, the change in heat (Δ H) = 19,070 cal, and the change in entropy (Δ S) = 90 cal/K.

2. Calculate the Gibbs free energy change (ΔG) for the following chemical reaction:

glutamate + NH_3 \longrightarrow glutamine + H_2O

The reaction occurs at 68 °F, the change in heat (Δ H) = 4103 cal, and the change in entropy (Δ S) = 2.4 cal/K.

- 3. Would either of the reactions above occur spontaneously? If so, which one(s) and why?
- 4. Are either of the above reactions endergonic? If so, which one(s) and why?
- 5. How does the Gibbs free energy in each of the two reactions change if the temperature were raised to normal body temperature (98.6 °F)?
- 6. Does an increase in reaction temperature make each of these reactions more or less likely to occur spontaneously? Explain your answer.